Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Microbiol ; 15: 1338100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318336

RESUMEN

Wastewater-based epidemiology (WBE) has been used for monitoring infectious diseases like polio, hepatitis, etc. since the 1940s. It is also being used for tracking the SARS-CoV-2 at the population level. This article aims to compile and assess the information for the qualitative and quantitative detection of the SARS-CoV-2 in wastewater. Based on the globally published studies, we highlight the importance of monitoring SARS-CoV-2 presence/detection in the wastewater and concurrently emphasize the development of early surveillance techniques. SARS-CoV-2 RNA sheds in the human feces, saliva, sputum and mucus that ultimately reaches to the wastewater and brings viral RNA into it. For the detection of the virus in the wastewater, different detection techniques have been optimized and are in use. These are based on serological, biosensor, targeted PCR, and next generation sequencing for whole genome sequencing or targeted amplicon sequencing. The presence of the SARS-CoV-2 RNA in wastewater could be used as a potential tool for early detection and devising the strategies for eradication of the virus before it is spread in the community. Additionally, with the right and timely understanding of viral behavior in the environment, an accurate and instructive model that leverages WBE-derived data may be created. This might help with the creation of technological tools and doable plans of action to lessen the negative effects of current viral epidemics or future potential outbreaks on public health and the economy. Further work toward whether presence of viral load correlates with its ability to induce infection, still needs evidence. The current increasing incidences of JN.1 variant is a case in point for continued early detection and surveillance, including wastewater.

2.
J Contam Hydrol ; 261: 104307, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38278020

RESUMEN

The Rooppur Nuclear Power Plant (RNPP) at Ishwardi, Bangladesh is planning to go into operation within 2024 and therefore, adjacent areas of RNPP is gaining adequate attention from the scientific community for environmental monitoring purposes especially for water resources management. However, there is a substantial lack of literature as well as environmental datasets for earlier years since very little was done at the beginning of the RNPP's construction phase. Therefore, this study was conducted to assess the potential toxic elements (PTEs) contamination in the groundwater and its associated health risk for residents at the adjacent part of the RNPP during the year of 2014-2015. For the purposes of achieving the aim of the study, groundwater samples were collected seasonally (dry and wet season) from nine sampling sites and afterwards analyzed for water quality indicators such as temperature (Temp.), pH, electrical conductivity (EC), total dissolved solid (TDS), total hardness (TH) and for PTEs including Iron (Fe), Manganese (Mn), Copper (Cu), Lead (Pb), Chromium (Cr), Cadmium (Cd) and Arsenic (As). This study adopted the newly developed Root Mean Square water quality index (RMS-WQI) model to assess the scenario of contamination from PTEs in groundwater whereas the human health risk assessment model was utilized to quantify the risk of toxicity from PTEs. In most of the sampling sites, PTEs concentration was found higher during the wet season than the dry season and Fe, Mn, Cd and As exceeded the guideline limit for drinking water. The RMS score mostly classified the groundwater in terms of PTEs contamination into "Fair" condition. The non-carcinogenic risks (expressed as Hazard Index-HI) revealed that around 44% and 89% of samples for adults and 67% and 100% of samples for children exceeded the threshold limit set by USEPA (HI > 1) and possessed risks through the oral pathway during dry and wet season, respectively. Furthermore, the calculated cumulative HI score was found higher for children than the adults throughout the study period. In terms of carcinogenic risk (CR) from PTEs, the magnitude of risk decreased following the pattern of Cr > As > Cd. Although the current study is based on old dataset, the findings might serve as a baseline for monitoring purposes to reduce future hazardous impact from the power plant.


Asunto(s)
Arsénico , Agua Subterránea , Metales Pesados , Adulto , Niño , Humanos , Cadmio , Arsénico/análisis , Monitoreo del Ambiente , Hierro , Manganeso , Medición de Riesgo , Metales Pesados/análisis
3.
Environ Sci Pollut Res Int ; 30(40): 91676-91709, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37526818

RESUMEN

Mine tailings contain finer particles, crushed rocks, dugout-soil, water, and organic and inorganic metals or metalloids, including heavy metals and radionuclides, which are dumped as waste or non-economic by-products generated during mining and mineral processing. These abundant and untreated materials seriously threaten the environment, human health, and biodiversity because of the presence of heavy metals, radionuclides, and associated primary and secondary toxic components, including the risk of tailings dam failures. Biocementation technology, which involves the use of mining microbes to secrete cement-like materials that bind soil particles together, is a promising approach to restore mine tailing sites and reduce their mobility and toxicity. However, there is a lack of literature on the combined interactions among mining microbes, tailings residues, biocementation, and low-carbon cement (LCC) prospects. This comprehensive review article explores the prospects of mining microbes for mine tailings restoration using biocementation technology, the key influencing factors and their impact, mechanisms and metabolic pathways, and the effectiveness of biocementation technology in restoring mine tailings sites. In addition, it reviews the utilization of mine tailings materials as an alternative source of cement or construction materials for LCC technology. Furthermore, this review highlights the important issues, challenges, limitations, and applications of biocementation technology for mine tailings rehabilitation. Finally, it provides insights for future research and implementation of biocementation for mine tailings restoration and utilization of tailing materials in the industrial sector to reduce carbon emissions/footprints and achieve net-zero goals.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Metales Pesados/análisis , Suelo/química , Minería , Minerales , Tecnología , Contaminantes del Suelo/análisis
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108304

RESUMEN

The common octopus is a cephalopod species subject to active fisheries, with great potential in the aquaculture and food industry, and which serves as a model species for biomedical and behavioral studies. The analysis of the skin mucus allows us to study their health in a non-invasive way, by using a hardly exploited discard of octopus in the fishing sector. A shotgun proteomics approach combined with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap-Elite instrument was used to create a reference dataset from octopus skin mucus. The final proteome compilation was investigated by integrated in-silico studies, including Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, network studies, and prediction and characterization analysis of potential bioactive peptides. This work presents the first proteomic analysis of the common octopus skin mucus proteome. This library was created by merging 5937 identified spectra of 2038 different peptides. A total of 510 non-redundant proteins were identified. Obtained results show proteins closely related to the defense, which highlight the role of skin mucus as the first barrier of defense and the interaction with the environment. Finally, the potential of the bioactive peptides with antimicrobial properties, and their possible application in biomedicine, pharmaceutical, and nutraceutical industry was addressed.


Asunto(s)
Octopodiformes , Proteogenómica , Animales , Proteómica/métodos , Proteoma/metabolismo , Octopodiformes/química , Octopodiformes/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos/metabolismo , Moco/metabolismo
5.
Mar Drugs ; 21(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37103345

RESUMEN

The common octopus (Octopus vulgaris) is nowadays the most demanded cephalopod species for human consumption. This species was also postulated for aquaculture diversification to supply its increasing demand in the market worldwide, which only relies on continuously declining field captures. In addition, they serve as model species for biomedical and behavioral studies. Body parts of marine species are usually removed before reaching the final consumer as by-products in order to improve preservation, reduce shipping weight, and increase product quality. These by-products have recently attracted increasing attention due to the discovery of several relevant bioactive compounds. Particularly, the common octopus ink has been described as having antimicrobial and antioxidant properties, among others. In this study, the advanced proteomics discipline was applied to generate a common octopus reference proteome to screen potential bioactive peptides from fishing discards and by-products such as ink. A shotgun proteomics approach by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap Elite instrument was used to create a reference dataset from octopus ink. A total of 1432 different peptides belonging to 361 non-redundant annotated proteins were identified. The final proteome compilation was investigated by integrated in silico studies, including gene ontology (GO) term enrichment, pathways, and network studies. Different immune functioning proteins involved in the innate immune system, such as ferritin, catalase, proteasome, Cu/Zn superoxide dismutase, calreticulin, disulfide isomerase, heat shock protein, etc., were found in ink protein networks. Additionally, the potential of bioactive peptides from octopus ink was addressed. These bioactive peptides can exert beneficial health properties such as antimicrobial, antioxidant, antihypertensive, and antitumoral properties and are therefore considered lead compounds for developing pharmacological, functional foods or nutraceuticals.


Asunto(s)
Octopodiformes , Proteoma , Animales , Humanos , Proteoma/metabolismo , Proteómica/métodos , Octopodiformes/química , Cromatografía Liquida , Antioxidantes/farmacología , Antioxidantes/metabolismo , Tinta , Espectrometría de Masas en Tándem , Péptidos/química
6.
Front Plant Sci ; 14: 1133115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968399

RESUMEN

Chalk, an undesirable grain quality trait in rice, is primarily formed due to high temperatures during the grain-filling process. Owing to the disordered starch granule structure, air spaces and low amylose content, chalky grains are easily breakable during milling thereby lowering head rice recovery and its market price. Availability of multiple QTLs associated with grain chalkiness and associated attributes, provided us an opportunity to perform a meta-analysis and identify candidate genes and their alleles contributing to enhanced grain quality. From the 403 previously reported QTLs, 64 Meta-QTLs encompassing 5262 non-redundant genes were identified. MQTL analysis reduced the genetic and physical intervals and nearly 73% meta-QTLs were narrower than 5cM and 2Mb, revealing the hotspot genomic regions. By investigating expression profiles of 5262 genes in previously published datasets, 49 candidate genes were shortlisted on the basis of their differential regulation in at least two of the datasets. We identified non-synonymous allelic variations and haplotypes in 39 candidate genes across the 3K rice genome panel. Further, we phenotyped a subset panel of 60 rice accessions by exposing them to high temperature stress under natural field conditions over two Rabi cropping seasons. Haplo-pheno analysis uncovered haplotype combinations of two starch synthesis genes, GBSSI and SSIIa, significantly contributing towards the formation of grain chalk in rice. We, therefore, report not only markers and pre-breeding material, but also propose superior haplotype combinations which can be introduced using either marker-assisted breeding or CRISPR-Cas based prime editing to generate elite rice varieties with low grain chalkiness and high HRY traits.

7.
Sensors (Basel) ; 22(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36146439

RESUMEN

The degree of maturity of oil palm fresh fruit bunches (FFB) at the time of harvest heavily affects oil production, which is expressed in the oil extraction rate (OER). Oil palm harvests must be harvested at their optimum maturity to maximize oil yield if a rapid, non-intrusive, and accurate method is available to determine their level of maturity. This study demonstrates the potential of implementing Raman spectroscopy for determining the maturity of oil palm fruitlets. A ripeness classification algorithm has been developed utilizing machine learning by classifying the components of organic compounds such as ß-carotene, amino acid, etc. as parameters to distinguish the ripeness of fruits. In this study, 47 oil palm fruitlets spectra from three different ripeness levels-under ripe, ripe, and over ripe-were examined. To classify the oil palm fruitlets into three maturity categories, the extracted features were put to the test using 31 machine learning models. It was discovered that the Medium, Weighted KNN, and Trilayered Neural Network classifier has a maximum overall accuracy of 90.9% by using four significant features extracted from the peaks as the predictors. To conclude, the Raman spectroscopy method may offer a precise and efficient means to evaluate the maturity level of oil palm fruitlets.


Asunto(s)
Arecaceae , Aminoácidos/análisis , Arecaceae/química , Correlación de Datos , Frutas/química , Compuestos Orgánicos , Aceite de Palma/análisis , beta Caroteno/análisis
8.
Int J Pept Res Ther ; 28(4): 124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35789799

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a viral disease caused by the Crimean-Congo hemorrhagic fever virus (CCHFV) of the Nairovirus genus. CCHF has occurred endemically in several regions of Africa, Southern Europe, and Central and Southeast Asia, with a case fatality rate of 5 to 80%. The World health organization enlisted CCHF as one of the top prioritized diseases for research and development in emergency contexts that making it a public health concern as no effective vaccine is available till date. Therefore, the present study aims to develop an effective multi-epitope subunit vaccine using immunoinformatics and reverse vaccinology approach against this virus. The B-cell and T-cell epitopes were predicted from structural and non-structural proteins, and filtered by immunogenicity, allergenicity, toxicity, conservancy, and cross-reactivity. The computational analysis revealed that the epitopes could induce an adequate immune response and had strong associations with their respective human leukocyte antigen (HLA) alleles with 98.94% of total world population coverage. Finally, the vaccine with 427 amino acids was constructed by connecting 8 cytotoxic T-lymphocytes, 4 helper T-lymphocytes, and 10 B-cell epitopes with appropriate linkers and ß-defensin as an adjuvant. The antigenicity, allergenicity, solubility, and physiochemical properties of the vaccine were evaluated, followed by structural modelling, refinement, and validation. In addition, molecular docking and molecular dynamic simulations revealed a robust binding affinity and stability of the vaccine-immune receptor complex. Moreover, the codons were optimized for its higher expression in Escherichia coli (E. coli) K12 strain followed by in silico cloning. The proposed subunit vaccine developed in this study could be a potential candidate against CCHFV. However, further experimental validation is required to ensure the immunogenicity and safety profile of the proposed vaccine for combating and eradicating CCHFV. Supplementary Information: The online version contains supplementary material available at 10.1007/s10989-022-10430-0.

9.
Heliyon ; 8(5): e09400, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35578638

RESUMEN

COVID-19 has elapsed all over the world with massive losses which indicate the lack of availability of medical equipment during the pandemic such as a ventilator. This is exemplified by the densely populated country Bangladesh who unable to maintain COVID-affected people because of the ventilator. Due to the higher price, unavailability, and manufacturing defection, most medical are unable to purchase this ventilator which causes terrible death for a respiratory problem. Of these cases, this paper represents a way to escape this problem and proposed a mechanical ventilator named "NISHASH" which will help to anticipate COVID affected people and higher price of the ventilator. Through the electromechanical instruments, a prototype lightweight easily moveable where preciously it automatically controls with digital feedback system ventilator which fulfills oxygen flow based on patient requirement are developed with different selection mode. The aim was to design and develop inexpensively automated easy to build to minimize the extreme shortage of the ventilator in Bangladesh. In this model of a mechanical ventilator, the cost is less than $90 where components are available all over the world.

10.
Materials (Basel) ; 15(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35407722

RESUMEN

Soil improvement via MICP (microbially induced carbonate precipitation) technologies has recently received widespread attention in the geoenvironmental and geotechnical fields. The durability of MICP-treated samples remains a critical concern in this novel method. In this work, fiber (jute)-reinforced MICP-treated samples were investigated to evaluate their durability under exposure to distilled water (DW) and artificial seawater (ASW), so as to advance the understanding of long-term performance mimicking real field conditions, along with improvement of the MICP-treated samples for use in coastal erosion protection. Primarily, the results showed that the addition of fiber (jute) improved the durability of the MICP-treated samples by more than 50%. Results also showed that the wet-dry (WD) cyclic process resulted in adverse effects on the mechanical and physical characteristics of fiber-reinforced MICP-treated samples in both DW and ASW. The breakdown of calcium carbonates and bonding effects in between the sand particles was discovered to be involved in the deterioration of MICP samples caused by WD cycles, and this occurs in two stages. The findings of this study would be extremely beneficial to extend the insight and understanding of improvement and durability responses for significant and effective MICP treatments and/or re-treatments.

11.
Biomed Res Int ; 2021: 9050026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307671

RESUMEN

Chloroflexus aurantiacus is a thermophilic bacterium that produces a multitude of proteins within its genome. Bioinformatics strategies can facilitate comprehending this organism through functional and structural interpretation assessments. This study is aimed at allocating the structure and function through an in silico approach required for bacterial protein biosynthesis. This in silico viewpoint provides copious properties, including the physicochemical properties, subcellular location, three-dimensional structure, protein-protein interactions, and functional elucidation of the protein (WP_012256288.1). The STRING program is utilized for the explication of protein-protein interactions. The in silico investigation documented the protein's hydrophilic nature with predominantly alpha (α) helices in its secondary structure. The tertiary-structure model of the protein has been shown to exhibit reasonably high consistency based on various quality assessment methods. The functional interpretation suggested that the protein can act as a translation initiation factor, a protein required for translation and protein biosynthesis. Protein-protein interactions also demonstrated high credence that the protein interconnected with 30S ribosomal subunit involved in protein synthesis. This study bioinformatically examined that the protein (WP_012256288.1) is affiliated in protein biosynthesis as a translation initiation factor IF-3 of C. aurantiacus.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chloroflexus/metabolismo , Simulación por Computador , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Dominio Catalítico , Modelos Moleculares , Anotación de Secuencia Molecular , Mapas de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Fracciones Subcelulares/metabolismo
12.
Biomed Pharmacother ; 140: 111742, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34052565

RESUMEN

Here, drug repurposing and molecular docking were employed to screen approved MPP inhibitors and their derivatives to suggest a specific therapeutic agent for the treatment of COVID-19. The approved MPP inhibitors against HIV and HCV were prioritized, while RNA dependent RNA Polymerase (RdRp) inhibitor remdesivir including Favipiravir, alpha-ketoamide were studied as control groups. The target drug surface hotspot was also investigated through the molecular docking technique. Molecular dynamics was performed to determine the binding stability of docked complexes. Absorption, distribution, metabolism, and excretion analysis was conducted to understand the pharmacokinetics and drug-likeness of the screened MPP inhibitors. The results of the study revealed that Paritaprevir (-10.9 kcal/mol) and its analog (CID 131982844) (-16.3 kcal/mol) showed better binding affinity than the approved MPP inhibitors compared in this study, including remdesivir, Favipiravir, and alpha-ketoamide. A comparative study among the screened putative MPP inhibitors revealed that the amino acids T25, T26, H41, M49, L141, N142, G143, C145, H164, M165, E166, D187, R188, and Q189 are at potentially critical positions for being surface hotspots in the MPP of SARS-CoV-2. The top 5 predicted drugs (Paritaprevir, Glecaprevir, Nelfinavir, and Lopinavir) and the topmost analog showed conformational stability in the active site of the SARS-CoV-2 MP protein. The study also suggested that Paritaprevir and its analog (CID 131982844) might be effective against SARS-CoV-2. The current findings are limited to in silico analysis and lack in vivo efficacy testing; thus, we strongly recommend a quick assessment of Paritaprevir and its analog (CID 131982844) in a clinical trial.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasas/uso terapéutico , Reposicionamiento de Medicamentos/métodos , Humanos , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular
13.
Heliyon ; 7(4): e06705, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33869875

RESUMEN

Corchorus capsularis, commonly known as jute occupies the leading position in the production of natural fibre alongside lower environmental threat. Small noncoding ~21 to 24 nucleotides long microRNAs play significant roles in regulating the gene expression as well as different functions in cellular growth and development. Here, the study adopted a comprehensive in silico approach to identify and characterize the conserved miRNAs in the genome of C. capsularis including functional annotation of specific gene targets. Expressed Sequence Tags (ESTs) based homology search of 3350 known miRNAs of dicotyledons were allowed against 763 non-redundant ESTs of jute genome, resulted in the prediction of 5 potential miRNA candidates belonging five different miRNA families (miR1536, miR9567-3p, miR4391, miR11300, and miR8689). The putative miRNAs were composed of 18 nucleotides having a range of -0.49 to -1.56 MFEI values and 55%-61% of (A + U) content in their pre-miRNAs. A total of 1052 gene targets of putative miRNAs were identified and their functions were extensively analyzed. Most of the gene targets were involved in plant growth, cell cycle regulation, organelle synthesis, developmental process and environmental responses. Five gene targets, namely, NAC Domain Containing Protein, WRKY DNA binding protein, 3-dehydroquinate synthase, S-adenosyl-L-Met-dependent methyl transferase and Vascular-related NAC-Domain were found to be involved in the lignin biosynthesis, phenylpropanoid pathways and secondary wall formation. The present study might accelerate the more miRNA discovery, strengthening the complete understanding of miRNAs association in the cellular basis of lignin biosynthesis towards the production of high standard jute products.

14.
Infect Microbes Dis ; 3(1): 41-48, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38630081

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has become a public health crisis and a global catastrophe for human societies. In the absence of a vaccine, non-pharmaceutical interventions have been implemented across the world to reduce COVID-19 transmission. Recently, several studies have articulated the influence of meteorological parameters on COVID-19 infections in several countries. The purpose of this study was to investigate the effect of lockdown measures and meteorological parameters on COVID-19 daily confirmed cases and deaths in Bangladesh. Different parameters, such as case fatality rate, recovery rate, number of polymerase chain reaction tests, and percentages of confirmed cases were calculated for data covering March to September 2020. The meteorological data include daily average temperature, humidity, and wind speed, and their effects on COVID-19 data were analyzed after 0, 3, 7, and 14 days. A linear regression analysis revealed that all the studied meteorological parameters were positively correlated with the daily new cases and deaths in Bangladesh, while the highest correlations were observed for the 14 days incubation period. These results provide useful implications for the healthcare authorities to contain the pandemic in Bangladesh and beyond.

15.
Biomed Pharmacother ; 131: 110774, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33152933

RESUMEN

Dita bark (Alstonia scholaris (L.) R. Br.) is an ethnomedicine used for the management of various ailments. This study aimed to investigate the biological properties of methanol extract of A. scholaris bark (MEAS), through in vivo, in vitro and in silico approaches alongside its phytochemical profiling. Identification and nature of the bioactive secondary metabolites were studied by the established qualitative tests and GC-MS analysis. The antidepressant activity was determined by forced swimming test (FST) and tail suspension test (TST) in mice. The anti-inflammatory and thrombolytic effect was evaluated using inhibition of protein denaturation technique and clot lysis technique, respectively. Besides, computational studies of the isolated compounds and ADME/T analysis were performed by Schrödinger-Maestro (v11.1) software, and PASS prediction was conducted through PASS online tools. The GC-MS analysis revealed the presence of several secondary metabolites in MEAS. Treatment with MEAS revealed a significant reduction of immobility time in a dose-dependent manner in FST and TST. Besides, MEAS showed substantial anti-inflammatory effects at the higher dose (400 µg/mL) as well as revealed notable clot lysis effect as compared to control. In the case of computer-aided investigation, all compounds meet the condition of Lipinski's rule of five. PASS study also predicted for all compounds, and among these safe compound furazan-3-amine showed the most spontaneous binding energy for both antidepressant and thrombolytic activities, as well as 5-dimethylamino-6 azauracil, found promising for anti-inflammatory activity. Taken together, the investigation concludes that MEAS can be a potent source of antidepressant, anti-inflammatory, and thrombolytic agents.


Asunto(s)
Alstonia/química , Antiinflamatorios/farmacología , Antidepresivos/farmacología , Fibrinolíticos/farmacología , Extractos Vegetales/farmacología , Adulto , Animales , Antiinflamatorios/aislamiento & purificación , Antidepresivos/aislamiento & purificación , Simulación por Computador , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Fibrinolíticos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Humanos , Inflamación/tratamiento farmacológico , Masculino , Ratones , Corteza de la Planta , Trombosis/tratamiento farmacológico , Adulto Joven
16.
Materials (Basel) ; 13(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967316

RESUMEN

The microbial-induced carbonate precipitation (MICP) method has gained intense attention in recent years as a safe and sustainable alternative for soil improvement and for use in construction materials. In this study, the effects of the addition of plant-based natural jute fibers to MICP-treated sand and the corresponding microstructures were measured to investigate their subsequent impacts on the MICP-treated biocemented sand. The fibers used were at 0%, 0.5%, 1.5%, 3%, 5%, 10%, and 20% by weight of the sand, while the fiber lengths were 5, 15, and 25 mm. The microbial interactions with the fibers, the CaCO3 precipitation trend, and the biocemented specimen (microstructure) were also evaluated based on the unconfined compressive strength (UCS) values, scanning electron microscopy (SEM), and fluorescence microscopy. The results of this study showed that the added jute fibers improved the engineering properties (ductility, toughness, and brittleness behavior) of the biocemented sand using MICP method. Furthermore, the fiber content more significantly affected the engineering properties of the MICP-treated sand than the fiber length. In this study, the optimal fiber content was 3%, whereas the optimal fiber length was s 15 mm. The SEM results indicated that the fiber facilitated the MICP process by bridging the pores in the calcareous sand, reduced the brittleness of the treated samples, and increased the mechanical properties of the biocemented sand. The results of this study could significantly contribute to further improvement of fiber-reinforced biocemented sand in geotechnical engineering field applications.

17.
PLoS One ; 15(8): e0237181, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32813697

RESUMEN

Multidrug-resistant Vibrio parahaemolyticus has become a significant public health concern. The development of effective drugs and vaccines against Vibrio parahaemolyticus is the current research priority. Thus, we aimed to find out effective drug and vaccine targets using a comprehensive genome-based analysis. A total of 4822 proteins were screened from V. parahaemolyticus proteome. Among 16 novel cytoplasmic proteins, 'VIBPA Type II secretion system protein L' and 'VIBPA Putative fimbrial protein Z' were subjected to molecular docking with 350 human metabolites, which revealed that Eliglustat, Simvastatin and Hydroxocobalamin were the top drug molecules considering free binding energy. On the contrary, 'Sensor histidine protein kinase UhpB' and 'Flagellar hook-associated protein of 25 novel membrane proteins were subjected to T-cell and B-cell epitope prediction, antigenicity testing, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking analysis to generate the most immunogenic epitopes. Three subunit vaccines were constructed by the combination of highly antigenic epitopes along with suitable adjuvant, PADRE sequence and linkers. The designed vaccine constructs (V1, V2, V3) were analyzed by their physiochemical properties and molecular docking with MHC molecules- results suggested that the V1 is superior. Besides, the binding affinity of human TLR-1/2 heterodimer and construct V1 could be biologically significant in the development of the vaccine repertoire. The vaccine-receptor complex exhibited deformability at a minimum level that also strengthened our prediction. The optimized codons of the designed construct was cloned into pET28a(+) vector of E. coli strain K12. However, the predicted drug molecules and vaccine constructs could be further studied using model animals to combat V. parahaemolyticus associated infections.


Asunto(s)
Vacunas Bacterianas/inmunología , Descubrimiento de Drogas/métodos , Genoma Bacteriano , Vibriosis/tratamiento farmacológico , Vibriosis/prevención & control , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/inmunología , Biología Computacional/métodos , Farmacorresistencia Bacteriana Múltiple/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Escherichia coli K12/genética , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mapas de Interacción de Proteínas , Proteoma/genética , Proteómica/métodos , Vacunas de Subunidad/inmunología , Vibriosis/microbiología
18.
Infect Genet Evol ; 84: 104440, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32622082

RESUMEN

SARS-CoV-2, a new coronavirus strain responsible for COVID-19, has emerged in Wuhan City, China, and continuing its global pandemic nature. The availability of the complete gene sequences of the virus helps to know about the origin and molecular characteristics of this virus. In the present study, we performed bioinformatic analysis of the available gene sequence data of SARS-CoV-2 for the understanding of evolution and molecular characteristics and immunogenic resemblance of the circulating viruses. Phylogenetic analysis was performed for four types of representative viral proteins (spike, membrane, envelope and nucleoprotein) of SARS-CoV-2, HCoV-229E, HCoV-OC43, SARS-CoV, HCoV-NL63, HKU1, MERS-CoV, HKU4, HKU5 and BufCoV-HKU26. The findings demonstrated that SARS-CoV-2 exhibited convergent evolutionary relation with previously reported SARS-CoV. It was also depicted that SARS-CoV-2 proteins were highly similar and identical to SARS-CoV proteins, though proteins from other coronaviruses showed a lower level of resemblance. The cross-checked conservancy analysis of SARS-CoV-2 antigenic epitopes showed significant conservancy with antigenic epitopes derived from SARS-CoV. Descriptive epidemiological analysis on several epidemiological indices was performed on available epidemiological outbreak information from several open databases on COVID-19 (SARS-CoV-2). Satellite-derived imaging data have been employed to understand the role of temperature in the environmental persistence of the virus. Findings of the descriptive analysis were used to describe the global impact of newly emerged SARS-CoV-2, and the risk of an epidemic in Bangladesh.


Asunto(s)
Antígenos Virales/genética , Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Genoma Viral , Pandemias , Neumonía Viral/epidemiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Glicoproteína de la Espiga del Coronavirus/química , Alphacoronavirus/clasificación , Alphacoronavirus/genética , Alphacoronavirus/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Virales/química , Antígenos Virales/metabolismo , Bangladesh/epidemiología , Secuencia de Bases , Betacoronavirus/clasificación , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , Quirópteros/virología , Biología Computacional , Coronavirus Humano 229E/clasificación , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/metabolismo , Infecciones por Coronavirus/virología , Coronavirus Humano NL63/clasificación , Coronavirus Humano NL63/genética , Coronavirus Humano NL63/metabolismo , Coronavirus Humano OC43/clasificación , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/metabolismo , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/clasificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Modelos Moleculares , Mutación , Nucleoproteínas/química , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Filogenia , Neumonía Viral/virología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/clasificación , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2 , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
19.
PLoS One ; 15(7): e0236557, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32706840

RESUMEN

BACKGROUND: A systematic assessment was done to examine the effect of HIV interventions among MSM in Dhaka, Bangladesh. MSM were defined as males having sex with males but did not sell sex in the last year. MSM are hidden, marginalized and stigmatized population groups not only in Bangladesh but also globally. In 2010, HIV interventions for MSM were expanded in 40 districts of Bangladesh through 65 drop-in-centres (DICs) and peer outreach workers. METHODS: Data from two surveys on MSM in Dhaka in 2010 (baseline) and 2013 (midline) were used to analyse the effect of ongoing HIV prevention services. Both surveys used time location sampling to randomly select MSM for risk behaviour interviews. Two outcome variables were considered; condom use in the last anal sex act and consistent condom use during anal sex in the last month. Univariate and multivariate logistic regression methods were used to determine factors associated with condom use. RESULTS: Condom use significantly increased at the midline than baseline (p<0.001 for both). Multivariate analysis showed that having comprehensive knowledge of HIV and participation in HIV prevention programme were positively associated with both last time and consistent condom use. MSM who had comprehensive knowledge of HIV were 1.9 times (95% CI: 1.3-2.8, p = 0.002) and 2.1 times (95% CI: 1.4-3.2, p<0.001) more likely to use condoms than those who did not have comprehensive knowledge of HIV. The likelihood of using condoms among MSM was more than double at the midline than the baseline (p<0.01 for both). However, odds of condom use was significantly lower among those who perceived themselves to be at risk or were not able to assess their own risk of HIV. CONCLUSION: To sustain positive changes in HIV risk behaviours, HIV prevention programmes for MSM need to be continued and strengthened.


Asunto(s)
Condones/estadística & datos numéricos , Infecciones por VIH/prevención & control , Homosexualidad Masculina/psicología , Evaluación de Programas y Proyectos de Salud , Adolescente , Adulto , Bangladesh , Humanos , Entrevistas como Asunto , Conocimiento , Masculino , Oportunidad Relativa , Asunción de Riesgos , Encuestas y Cuestionarios , Adulto Joven
20.
Chemosphere ; 215: 846-857, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30359954

RESUMEN

Misuse/over use of antibiotics increases the threats to human health since this is a main reason behind evolution of antibiotic resistant bacterial pathogens. However, metals such as mercury, lead, zinc, copper and cadmium are accumulating to critical concentration in the environment and triggering co-selection of antibiotic resistance in bacteria. The co-selection of metal driven antibiotic resistance in bacteria is achieved through co-resistance or cross resistance. Metal driven antibiotic resistant determinants evolved in bacteria and present on same mobile genetic elements are horizontally transferred to distantly related bacterial human pathogens. Additionally, in marine environment persistent pollutants like microplastics is recognized as a vector for the proliferation of metal/antibiotics and human pathogens. Recently published research confirmed that horizontal gene transfer between phylogenetically distinct microbes present on microplastics is much faster than free living microbes. Therefore, microplastics act as an emerging hotspot for metal driven co-selection of multidrug resistant human pathogens and pose serious threat to humans which do recreational activities in marine environment and ingest marine derived foods. Therefore, marine environment co-polluted with metal, antibiotics, human pathogens and microplastics pose an emerging health threat globally.


Asunto(s)
Antibacterianos/toxicidad , Bacterias/patogenicidad , Farmacorresistencia Bacteriana Múltiple , Contaminación Ambiental/análisis , Metales/toxicidad , Plásticos/toxicidad , Bacterias/efectos de los fármacos , Bacterias/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...